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SUMMARY

We explore how to organize Environmentally-Extended Input-Output frameworks (EEIO), and in particu-

lar their Supply and Use Table (SUT) formulation, as graphs. Working directly with SUT systems instead

of converting to symmetric IO matrices involves fewer assumptions and (in principle) higher resolution

in expressing environmental impacts. We elaborate first on the representation of SUT tables as directed,

weighted bipartite graphs. We discuss both closed (circular) and open system configurations, featuring

source and sink nodes. These are modeled as regular and absorbing Markov Chains respectively. We out-

line a probabilistic random walk framework that realizes mathematically the colloquial Follow the Money

concept. This enables computing a range of various existing and new metrics using the EEIO data. As

an illustration, besides the standard environmental footprint metric, we introduce the concept of footprint

variance or the intrinsic variability of estimates. We illustrate the overall setup using a classic numerical

example from the EEIO literature.
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and maintained by Open Risk.

• The Open Risk Academy offers a range of online courses around risk and sustainable portfolio

management, which utilize the latest in interactive eLearning tools.

• The Open Source Repository contains a variety of open source tools and resources.

• More content: Open Risk White Papers and Open Risk Blog

About Open Risk

Open Risk is an independent provider of training and risk analysis tools to the broader financial services

community. Our mission is captured by the motto: The open future of risk management. Learn more

about our mission and projects at: www.openriskmanagement.com

Copyright 2024, Open Risk. All rights reserved.

https://www.openriskmanual.org/wiki
https://www.openriskacademy.com/
https://github.com/open-risk
https://www.openriskmanagement.com/open-risk-white-papers/
https://www.openriskmanagement.com/blog/
www.openriskmanagement.com


2
Open Risk

Follow the Money: Random Walks on Supply and Use Graphs

1 Introduction

1.1 Background

The need to accelerate efforts to understand and reduce environmental impact of economic activity is

increasingly recognized by policy makers, private enterprise and society at large. Many new policies and

management tools aim to contain the increase of Greenhouse Gas concentrations in the biosphere, which

are unequivocally caused by human activities [1]. Since 2011 and the measurements reported in AR5 [2],

concentrations have continued to increase, prompting ever more urgency on the face of significant technical

and cultural challenges for adaptation.

Environmental impacts, how they can be measured (accounted for) and, importantly, how they can be

attributed to human actors is a central aspect of mitigation actions pursued at various levels. Sufficiently

accurate, complete and trusted measurement and reporting of environmental impact is a prerequisite for

the sustainability transition. Equally important is a transparent, logical, fair and effective attribution

that will incentivize the economic actors optimally placed to support the transition.

In government (official) statistics the concept of physical (environmental) accounts is already well

established[3],[4]. The UN System of Environmental-Economic Accounting offers an elaborate overar-

ching accounting framework towards describing and analyzing the environment and its interactions with

the economy. The physical flows of materials from nature to the economy are described along with any

transformation processes and material flows back to nature (consumption, waste, pollution etc). The chal-

lenges for such a program (some aspects of it termed as Industrial Ecology) are significant. The multitude

of products and production processes means that major aggregations are generally required. Currently

statistics on physical flows of products are collected at a detail of circa 10000 products in selected areas

such as foreign trade and outputs from manufacturing industries[5].

Further, when addressing the environmental impact from complex interlocked production and con-

sumption activities and supply chains, crucial questions arise such as: who is responsible and how is

that responsibility to be attributed more precisely? Formal, transparent, comprehensive, mandatory etc.

mechanisms of establishing and communicating responsibility are part of the toolkit towards the broader

sustainability transition, but there are both conceptual questions and more practical challenges. Deep

questions such as to whether responsibility should be linked to compensatory or distributive justice ([6]),

or the role of individuals, who do not act in isolation but can own, control, shape, and profit from the

production processes that create impacts, even while this ownership is not distributed equally[7].

There are several outstanding proposals for environmental impact attribution systems. They are gener-

ally framed in terms of linking impacts to specific economic actors (consumers, producers, prime extractors,

or other enabling intermediaries and beneficiaries). Most developed in this direction are conceptual frame-

works for accounting and attributing Greenhouse Gas (GHG) emissions, in particular the GHG Protocol

concepts and proposals [8]. Besides directly involved economic actors, impact accounting and attribution

is also important for intermediaries acting as enablers or facilitators. Most prominently, this concerns

banking institutions that provide debt and equity finance. A significant current effort in the direction of

accounting and attributing emissions in financial portfolios is the Partnership for Carbon Accounting Fi-

nancials (PCAF) initiative and methodology [9]. An important characteristic of financial portfolios is that

they span a diverse fraction of an economy. Hence they require an attribution that is granular, coherent

(e.g., does not involve double counting) and comparable across a wide range of financed activities.

The ability to fine tune financial portfolio management methodologies to identify hot-spots, correla-
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tions and dependencies, to project and evaluate scenarios into the future, are all elements of an emerging

paradigm of Sustainable Portfolio Management. In [10] we developed a conceptual framework that synthe-

sized several current approaches to sustainable portfolio management. We discussed the different required

information layers that encompass the accounting, attribution and forward-looking limit frameworks that

implement carbon budget constraints. In this white paper the context is more technical and specialized:

we focus on the consistent attribution among disparate portfolio elements, which is one of the key required

tools.

The most straightforward attribution methodology attributes environmental impact to the producer

(the polluter pays principle). A major alternative concept is consumption-based attribution (commonly

referred to as footprinting). It was developed to address a shortcoming of production-based attribution,

namely the lack of attribution to international economic exchanges. Trade is a major part of modern

economies and ignoring its impact creates significant blind spots and counter-incentives.

Responsibility according to the consumption-based principle rests with the buyers, or the so-called final

demand sector (e.g. households, governments and investors as consumers), because the impacts generated

by suppliers are induced by consumer demand and are enabled by consumers’ purchases. Income-based

carbon accounting is yet another strategy to distribute impacts between economic actors[11]. Further

proposals and reviews of different types of responsibility attribution are provided in[12],[13],[14, 15].

A strand of academic research and practical economic analysis that is underpinning the above accounting

and attribution methodologies concerns data collection and organization in the form of economic Input-

Output (IO) frameworks. Input-output analysis is a top-down (macro) technique used by economists and

statisticians to monitor and account for the interdependency of modern economic systems and guide policy

decisions.

The field has a long history since the proposals of economist Wassily Leontief who developed a system of

economic analysis in the 1930s and 1940s. The conceptual origins of IO models go even further back: The

Tableau Economique in early economic theory proposed by François Quesnay in 1758 is being considered

the precursor to modern economic Input-Output Models. For a complete overview and references of the

IO methodology see [16].

The holistic aspect of IO frameworks is particularly relevant for a consistent and generally applicable

view, e.g., in sustainable portfolio management context. In modern IO databases the basic data are

organized as an integrated input-output framework[5]. This construction involves a large number of steps,

with assumptions and adjustments along the way. The complexity grows with the size of the framework:

the number of countries covered in detail, the number of sectors and products. The accuracy and fidelity

of any attribution is limited by disparities in the collection and standardization of raw data in the different

regions and sectors. The impact of data quality on results has been studied extensively[17]. There are

further methodological challenges. Comprehensive lists of issues are given in [18] and [19].

An important feature of the vast Input-Output literature from the earliest days is that the distinction

between sectors and products is under-emphasized, essentially for computational reasons. Namely the

organization and processing of the underlying data is such that the number of recognized products ends

up being the same as the number of recognized sectors. This arrangement simplifies the overall system

and enables important analytical tools. It comes, though, at the expense of fidelity in representation

and it necessitates further methodology assumptions that are not a-priori required. Another important

methodological aspect which materially affects attribution outcomes is the choice of structure of an open

IO system, namely which sectors are treated as exogenous. For example, after endogenizing labor in global
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supply chains in[20], they show that the weight of high impact industrial sectors versus service sectors

shifts significantly. In other words the manner in which one decides to cut the circular graph of the human

economy produces different views of the same underlying reality.

Graph Theory is a long-standing field of both mathematics and computer science. There is also a growing

related body of work in economic and financial disciplines that makes use of generalized graph structures

for Network Analysis. Overviews are given in ([21],[22]).

From early on graph theoretic techniques have also been considered in the theory and practice of Input-

Output models. At the simplest level the linkage of Input-Output Economic models to Graph Theory

goes by the name of Qualitative input-output analysis (QIOA) [16]. More recently the role of directed

bipartite graphs to organize the information of symmetric Input-Output frameworks has been recognized

in [23].

1.2 In this White Paper

The emphasis on Supply and Use (SUT) approaches as the backbone of EEIO calculations motivates

developing graph-theoretic tools further. In particular we are interested in attribution methodologies with

minimal methodological assumptions and with potentially significantly higher granularity in products

versus sectors.

Towards that end we explore how Environmentally-Extended Input-Output data (EEIO) in SUT format

relate to the concepts and algorithms of graph theory. We consider in detail the graph interpretation of

the standard supply-use transaction block as discussed, e.g., in[24]. To the degree possible we view the

input-output framework not as a causal economic model, but rather an empirical descriptive tool that

registers dependencies between sectors and production related environmental impacts.

On this basis we elaborate on a representation of the SUT tables as a type of directed, weighted bipartite

graph. IO literature focuses on the so-called open form of the equations and is, in particular, geared

towards flexible analysis of changing final demand. Our approach is more general: We consider closed

and open systems in parallel, as different views of the same system. The most applicable choice for EEIO

attribution need not coincide with other economic analysis requirements.

Beyond graphs as static representations of dependencies, stochastic, Random Walks on graphs are well

established mathematical models with a rich associated toolkit. The discipline has received significant

attention in the context of social networks but is applicable far more broadly. The probabilistic interpre-

tation of IO frameworks has attracted some attention both as a means of interpretation and in terms of

widening the toolkit of calculations [25, 26, 27, 28].

Here we will formulate the problem of a random walk on a SUT (bipartite) graph for both open and closed

IO configurations. With the probabilistic interpretation at hand it is possible to give precise meaning to

the phrase Follow the Money. Tracing the flow of funds between economic actors and the environmental

impact they generate along the way is expressed as an expectation (an average over possibilities). Both

direct and indirect impacts can be computed using such expressions.

Furthermore the probabilistic interpretation enables further analytic measures of interest, all derived

from the well developed language of conditional probabilities of a multivariate distribution. An immediate

example is the computing the intrinsic variability of impacts around their expected values. Besides various

analytic formulas, Monte Carlo simulations can help derive more elaborate measures.

There are, in summary, several stacked and linked conceptual domains that we must gingerly walk
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through in the present exercise.

• The basis of all further elaborations and models is formed from a vast array of empirical data

(statistical surveys etc.) that are aggregated into the set of Supply and Use tables (SUT) produced

and publicized by official statistics agencies. We take these structures as given and do not delve

here further in the significant complexities involved. Further, we will only focus on the single region

version for simplicity of exposition, but the extension is straightforward..

• From the overall EEIO database, certain numerical elements of the SUT tables are recognized as

mathematical matrices and vectors. This is the starting point for making connections with graph

theory. The SUT matrices can in turn be interpreted as representing SUT graphs, exploiting the

well-known matrix / graph correspondence. We characterize the specific category of mathematical

graphs (bipartite, directed, etc.) that is applicable in this case.

• As a separate exercise, SUT matrices can also generate transition matrices associated with Markov

Chains. This a modeling step (an assumption) that is inline with the prevailing interpretation of IO

systems. Finally, Markov Chains can being interpreted as Random Walks on the SUT graph. This

opens the way for the calculation of various expectations and other metrics.

2 Supply and Use Data as Graphs

2.1 Definitions and Notation

We review first some basic notions from graph theory1, to fix notation but also link them to the economic

concepts underpinning Input-Output frameworks, in particular when those are structured in the form of

Supply and Use Tables (SUT).

2.1.1 Basic Graphs

A standard mathematical graph is denoted G = (V,E) where V is a set of Nodes (also called Vertices).

There is a finite set of such nodes, vk, indexed by k ∈ [1, . . . , N ]. The order of a graph is the total number

|V | of nodes, equal to N . The nodes of a SUT graph will be standing for either economic Sectors, which

group together homogeneous organizational units comprising the economy, or Products, grouping goods

or services produced or consumed by organizational units2. Maybe useful to note that the type of a node

can only be inferred from the connectivity properties of the graph (rather than being an explicit label or

attribute).

2.1.2 About Sector Nodes

Following loosely the Eurostat definition [4], a node is an aggregation of economic and legal entities

characterized by decision-making autonomy in the exercise of their principal economic function. A Sector

Node (vk ∈ S) represents the aggregation of all economic actors that exhibit similar patterns of Production

1We will use the terms Graph and Network interchangeably.
2We will use the terms Industry or Sector interchangeably. Similarly the terms Commodity, Product, Good or Service or

Activity.
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and Consumption of resources but also similar Environmental Impact through such activities.3. A Sector

sub-index, i, runs from 1 to n. The number of sector nodes defines the Sector Resolution of the graph,

namely its ability to resolve the differentiated classes of economic agents making up the economy. The

sectoral resolution in turn determines the environmental Impact Attribution Resolution that is achievable

- the granularity with which one can attribute responsibility. When the desired granularity is lacking,

attribution must necessarily make assumptions that can be challenging to validate.

2.1.3 About Product Nodes

Products are the second type of economic concept that needs to be represented in a SUT graph as a

node. We will call them P nodes. These nodes represent stylized Product Markets, where producers and

consumers may sell and purchase goods and services respectively. The product market assumption implies

that any entity (e.g. company) within a Sector can either purchase or sell Products to any other entity, via

market intermediation. Product nodes can represent markets for various manufactured goods, services,

energy but also labor.

It is a defining feature of the SUT graph (as opposed to the more commonly encountered Input-Output

graphs) that Sector nodes (vk ∈ S) are transacting with each other only through the intermediation of

Product (vk ∈ P) nodes. The Product sub-index, p runs from 1 to m Products. The number m of distinct

Products, defines the Product Resolution of the graph. The Product resolution in turn determines the

Impact Calculation Resolution that is achievable. The Sector and Product resolution parameters (n,m)

need not be the same. Indeed a primary motivation for pursuing SUT graph tools is to enable flexibility

in this respect. The order of the graph satisfies N = m+ n. By convention the overall graph index k will

run first over Product nodes, then over Sector nodes.

2.1.4 About Activity Edges

Next to graph nodes representing economic actors and intermediaries, there is a set of Edges E ⊆ V × V .

Edges denote economic linkages between pairs of nodes. Examining the elements of the edge set E ⊆
(k, l) : k, l ∈ V indicates whether there is any type of economic interaction between two nodes k and l.

The edges of the graph might be representing, for example, economic transactions and associated monetary

and product flows between nodes. Edges are indexed via the pair of nodes (k, l) but can also be also be

indexed as eq, i.e., using a unique key q ∈ [1, . . . ,K]. The Size of a graph is the total number of its edges

|E| and is equal to K.

2.1.5 Bipartite Graphs

In SUT graphs the nodes of the graph are naturally split in two sets that are disjoint and independent.

Graphs that have two disjoint sets V1 and V2 of nodes, with edges that connect a node in one set only to

nodes in the other set are called Bipartite Graphs. The two subsets span the entire set of nodes V :

V = V1 ∪ V2 (1)

3In IO language sectors sometimes refer to industrial (production) sectors. Here we use the term more generally, as in,

e.g., the Household Sector
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The node sets V1 and V2 are also called the parts of the graph. In our case we label the two components

as P and S, thus:

V = P ∪ S (2)

The two disjoint sets S and P define a so-called coloring of the graph with two colors: e.g., if all nodes

in S are cyan, and all nodes in P are green, then every edge in the edge set E has endpoints of different

colors.

2.1.6 Directed Graphs

A directed graph (or digraph) is a graph where nodes are connected by directed edges. Edges are assigned

a direction, which means they are deemed to be emanating from one node and ending on another. Edges

are sometimes also called arcs and are represented with arrows. Directed graphs that do not have self-loops

are called simple directed graphs. The no self-loop requirement indicates that there are no arrows that

connect nodes to themselves. Mathematically E ⊆ (k, l) : k, l ∈ V, k ̸= l.

Input-Output systems are naturally represented as directed graphs: there is an observable directionality

of the movement of resources, products, funds etc. from one actor to another. A link from a Sector to

a Product does not preclude a link from the Product to the same Sector. The SUT graphs we will work

with are thus not oriented.

S1

S2

S3

S4

P1

P2

P3

P4

P5

P6

V Y

Illustration of a bipartite directed graph. Sector nodes are in cyan, Product nodes in lemon green. As we

will see this is an example of an open configuration featuring input and output nodes (V and Y).

2.1.7 Upstream and Downstream Directions

The directionality of the graph implies there are two distinct ways in which one can navigate it. One

direction is downstream, following the sense of the edge arrows. The other direction is upstream, or going

against the arrow directions. The actual economic meaning of upstream and downstream (i.e., what

exactly ”flows” up or down) derives from the nature of the weight functions associated with the SUT as

we will see next.
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2.1.8 Weighted Graphs

To nudge the SUT graph structure towards a useful tool, we must introduce at least one mechanism to

associate graph nodes (or edges) with real numbers. This is done by defining functions over the graph G,

for example a function f : V → R on graph nodes or a function h : E → R on graph edges. A weighted

directed graph is represented as a triple G = (V,E,W ) where V is the node set, E ⊆ (k, l) : k, l ∈ V is

the edge set and W : E → (0,∞) is a positive weight function that assigns a numerical value to every

edge of the graph. Weighted and directed graphs are also known as directed networks and edge-weighted

graphs. The numerical function W mapping to the edge set E will be an empirically measured economic

quantity. Three classic weight functions in IO frameworks are: 1) product volume flows (in so-called

physical units), 2) prices of products and 3) monetary flows (the product of volume and price). Here

we will focus on monetary flows. For environmental impact calculations we have to further augment the

graph to G = (V,E,W,F ), where F : E → (0,∞) are impact functions that assign suitable numerical

value to every edge of the graph. In summary, the underlying graph of a stylized Supply and Use Table

(SUT) system will be a weighted, directed, non-oriented bipartite graph without self-loops, with one or

more additional defined edge functions.

I

Sector i

J

Product p

Attributed Impact

Product Flow

Money Flow

Impact Intensity

Price

The representation of economic exchange is expressed

in a SUT Graph building block using two nodes, a

Sector node (i) and a Product node (p) and a set of

weighted edges. The core weight functions are money

flows (in currency units) and product flow volumes

(in physical units). Environmental Impact intensi-

ties and Prices are further characterizations of the

exchange that are expressed as graph functions. The

objective of attribution schemes is to use these inputs

(across the entire graph) to produce well-defined im-

pact metrics.

More complicated network structures may be required to capture all the relevant economic system

details (capital formation, financial linkages etc.), leading naturally to the concept of property graphs[29]

and graph databases. While computationally very rich network structures can be analyzed with modern

computers, the trade-off when introducing more complex structures is that the corpus of mathematical

graph theory results might no longer be applicable.

2.1.9 The Linear Algebra Correspondence

The duality between graphs and matrix representations has been a part of graph theory since early on

and Matrix Algebra has been recognized as a useful tool in graph theory.

Next, we discuss matrix representations of the above defined SUT graph class. As a starting point, in

the case of non-weighted graphs, an Adjacency Matrix A is a matrix of zeros and ones that encodes the

connectivity (presence of edges) between nodes:
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Akl =

1, if vk is connected to vl

0, otherwise
(3)

By convention the first index (k) of the adjacency matrix is the row index that denotes the from node,

while the second index l is the column index that denotes the to node.

2.1.10 The Weighted Adjacency Matrix W

Weighted graphs map naturally to real, positively valued, matrices. The weight function W over edges

can be represented as Wkl, a square matrix of N ×N dimension (N being the order of the graph G). The

information contained in the SUT graph can be displayed in matrix form by recording all edges between

the S and P nodes in the W matrix.

2.1.11 The Transposed Weight Matrix WT

The transposition (flipping along the diagonal) of the weights matrix W is analogous to reversing the

direction of the edges between all pairs of nodes (switching the upstream and downstream directions).

The result is that if an entry Wkl indicates that there is a transfer or linkage with a measured value from

node k to node l then the transpose weight matrix indicates this linkage is reversed, i.e., node k received

that quantity from node l.

I

Vk

J

Vl

Wkl

Wlk If the weight matrix W = Wkl is associated with

downstream product flow then the transpose matrix

WT = Wlk expresses the reverse upstream monetary

flow.

2.2 The Supply and Use Graph

2.2.1 The Overall Shape

The overall shape of the SUT weight matrix can be arranged to have the typical block structure associated

with a bipartite graph:

W =

[
0 U

V 0

]
(4)

The zero blocks along the diagonal indicate that there are no links between the two groups of nodes of

the bipartite graph. In this representation we order first the product nodes, so the U sub-matrix expresses

the weights from P nodes to S nodes and vice-versa for the V matrix. The transpose weight matrix of a

SUT graph is:
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WT =

[
0 V T

UT 0

]
(5)

We discuss the economic meaning of U and V sub-matrices further below. Economic arguments and

additional assumptions will further characterize the SUT graph. Special connectivity patterns can be

expressed in terms of the in-degree and out-degree matrices to which we turn next.

2.2.2 The Weighted In-Degree and Out-Degree Matrices D

For every node vl, the in-degree value Din(v) is the sum of assigned weights of all edges ending in the

node. This is the same as the column sum of the W matrix, cumulating over the first (row) index.

Din
ll =

N∑
k

Wkl (6)

The out-degree value Dout(v) is the corresponding sum of weights of all edges emanating from the node.

This is the row sum of W , cumulating over the second (column) index.

Dout
ll =

N∑
k

Wlk (7)

The in/out-degree matrices D are diagonal N ×N matrices.

2.2.3 The Use Matrix U

The Use Table or Input Table or Absorption matrix is the portion of W matrix that shows the use of goods

and services by a Sector. The value of each element of the Use matrix records purchases of Product p by

Sector i from the corresponding market node. Typically denoted U , the Product-by-Sector Use Matrix,

shows the monetary amount Upi of Product p used by Sector i. Mathematically the Use matrix Upi is of

dimension m× n and links the Product nodes p ∈ [1,m] to the Sectors i ∈ [1, n]. In graph terms the Use

matrix assigns edge weights to a subset of the edges in the global graph G.

Din(Si) is the Sector In-degree, the sum of monetary value of the Products used by sector Si.

Din(Si) =

m∑
p

Upi (8)

Dout(Pp) is the Product Out-degree, the value of product Pp usage by all sectors.

Dout(Pp) =

n∑
i

Upi (9)
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2.2.4 The Supply Matrix V

Correspondingly, V is a Sector-by-Product Supply Matrix (also Output Table), with Vip indicating the

volume of output of Product p by Sector i in monetary terms. In bipartite graph terms the Supply matrix

is a weight function on the subset of the global graph G that points from Sector nodes to Product nodes.

In a SUT graph a Sector i may produce an arbitrary number of Products p. One of those might be

classified as a primary product (that characterizes the sector) and the rest as secondary Products. The

Supply table in a general SUT will contain values that do not relate to the principal Product of a Sector.

As an example, several industries besides the energy sectors may produce various forms of usable energy

as byproducts. When the number of Products exceeds the number of industries m ≥ n, as is the case

in general, this phenomenon emerges by construction. In special cases, the number of Products may be

assumed to be the same as that of Sectors, but without having a one-to-one association between Sector

and Product. If all industries do indeed produce only a unique Product each, then the supply table is

diagonal and only the diagonal Vii elements will be non-zero. The name Make Table historically denotes

the transpose of the Supply Table V T with elements Vpi which is sometimes more convenient to depict

along U as they have the same ordering of indices. As we will see below, environmental impact functions

will only have support over the subset of edges present in the Supply matrix.

Dout(Si) is the Sector Out-degree, the volume of Products produced by sector Si.

Dout(Si) =

m∑
p

Vip (10)

Din(Pp) is the Product In-degree, the volume of product Pp contributed by Sectors.

Din(Pp) =

n∑
i

Vip (11)

Pictorially the in/out degree sums for S and P nodes are as follows:

U11

U21

U31

S1

P1

P2

P3

Din(S)

V11

V12

V13

S1

P1

P2

P3

Dout(S)

V11

V21

V31

S1

S2

S3

P1

Din(P )

U11

U12

U13

S1

S2

S3

P1

Dout(P )

2.2.5 About Sources and Sinks

A given node vk is a sink node if it has no outgoing edges, in other words, if the out-degree of vk is 0. A

node vk is a source node if there are no incoming edges, in other words, if the in-degree of vk is 0. A node

is isolated if it has zero both in- and out-degrees. We will assume the SUT graph has no isolated nodes.
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We will consider in parallel the two important sub-categories of SUT graphs: Closed Systems that

exhibit no sinks or sources and Open Systems that have one or more sink and source nodes.

2.2.6 Open and Closed SUT Graph Characterization

For both closed and open systems there is always at least one Sector using a Product, or Dout(P ) > 0.

In matrix terms, the row sum of the first n rows of W cannot be zero. This means that there is no

totally useless Production. For both closed and open systems a Sector is using at least one Product, or

Din(S) > 0. This means that there is no creation ex-nihilo, some input is required for any production.

The further conditions on the in/out-degree matrices depend on whether we are dealing with a closed on

open SUT system.

2.2.7 About Value Added

In a closed system there is at least one edge from some Sector into any Product node, or Din(P ) > 0.

This means that there is at least one Sector S producing a Product P. A Product cannot produce itself

(no parthenogenesis), so there is always at least one link coming from a Sector node. In matrix terms the

column sum of the first m columns of the W cannot be zero.

In open systems there can be Product nodes (will be called Value Added) that violate the constraint of

no parthenogenesis. Value Added v nodes are source nodes v ∈ P that account for ad-hoc (exogenous)

inputs to Production. They satisfy Din(v) = 0. In realistic systems value added may have several distinct

components such as labor, depreciation of capital, indirect business taxes, and imports. Each one of those

could be a distinct source node if desired.

2.2.8 About Final Demand

In a closed system a Sector must have some output Dout(S) > 0, there are no ”parasitic” sectors. In an

open system, a Sector may not have any outputs Dout(S) = 0 if it is a sink node. We call these v ∈ S

nodes Final Demand sectors. It is possible for a Product not to have an edge into a final demand node if

it is a strictly intermediate product that is only consumed by producing Sectors. In summary:

Connectivity Metric Closed SUT System Open SUT System

Din(P ) > 0 = 0 (Value Added Node)

Dout(P ) > 0 > 0

Din(S) > 0 > 0

Dout(S) > 0 = 0 (Final Demand Node)

Summary of in/out degree properties of closed and open SUT graphs.

2.2.9 Weighted Adjacency Matrix for a Closed SUT

In a closed model the weighted SUT matrix reads in more detail as:
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Wkl =



0 0 · · · 0 U11 U12 · · · U1n

0 0 · · · 0 U21 U22 · · · U2n

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 Um1 Um2 · · · Umn

V11 V12 · · · V1m 0 0 · · · 0

V21 V22 · · · V2m 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

Vn1 Vn2 · · · Vnm 0 0 · · · 0


(12)

The global column and row indices k, l run over the product and sector sub-indices [1, . . . ,m,m+1, . . . n].

The weighted adjacency matrix of a SUT graph is in general an asymmetric matrix, namely WT ̸= W .

2.2.10 Weighted Adjacency Matrix for an Open SUT

An open SUT graph is characterized by source and sink nodes. In the standard arrangement of IO with

exogenous households, source nodes are of the Product type. They deliver value added such as labor

to Sector nodes. Sink nodes are on the other hand of the Sector type (e.g., households that consume,

or create final demand from Product nodes. In an open system that is fully closable, i.e., represents an

underlying closed system but in open form, the total value added (source) must be equal to the total final

demand (sink). The weighted adjacency matrix of such an open SUT system can be organized as follows:

Wkl =



0 0 · · · 0 0 U11 U12 · · · U1,n−1 y1

0 0 · · · 0 0 U21 U22 · · · U2,n−1 y2
...

...
. . .

...
...

...
...

. . .
...

...

0 0 0 0 0 Um−1,1 Um−1,2 · · · Um−1,n−1 ym−1

0 0 · · · 0 0 v1 v2 · · · vn−1 0

V11 V12 · · · V1,m−1 0 0 0 · · · 0 0

V21 V22 · · · V2,m−1 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

Vn−1,1 Vn−1,2 · · · Vn−1,m−1 0 0 0 · · · 0 0

0 0 · · · 0 0 0 0 · · · 0 0



(13)

The nominal dimension of the W matrix is still the same (N ×N). The i and p indices are running to

n−1 and m−1 respectively spanning the so-called transient nodes. The last column captures outflow into

the sink Sector node Y while the last row (all zeros) indicates the sink node has no inputs. The middle

zero column indicates there are no inflows into the source v product node. The corresponding middle row

shows the outflows from the source node into sectors. This W matrix is evidently singular (det(W ) = 0)

as it has zero rows and columns.

2.2.11 From Closed to Open Systems and Back

An open configuration is the most typical way to arrange a SUT graph as it facilitates ”what-if” types

of analysis but in contrast to the closed form, it is highly non-unique. A closed SUT system can be
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converted into an open one by identifying a Sector, (say households) and disconnecting their inputs (their

consumption of products) from their outputs (their supply of labor to other sectors). A closed system can

be ”opened” in any number of ways (effectively equal to the number of nodes).

The reverse process of constructing a closed SUT system from an already developed open system4

involves a rearrangement that is termed endogenizing some economic actors. In graph terms this means

connecting the source and sink nodes and creating ”regular” nodes (whether of the S or P type). In

the most frequent use case, this procedure is applied to household nodes (individuals) and is known as

the closing the model with respect to households. The transformation eliminates household demand from

the total final demand and similarly removes the labor value added from the total value added. Such

input–output systems are known as semi-closed or extended systems. An open system cannot be closed

fully if its not balanced (more on that below). From a graph connectivity and usability perspective these

opening / closing processes are non-trivial. They imply additional assumptions and biases that may affect

outcomes.

S1

S2

P1

P2

P3

V

Y

Open SUT System in bipartite form. The Y node

has no outgoing edges while the V node has no

ingoing edges.

S1

S2

P1

P2

P3

V

Y

Closing the SUT System by adding an edge between

Y and V . Only possible for a balanced system.

It is maybe instructive to introduce a simple means to close a SUT system by changing a single value. In

the below weight matrix, notice the value w in the last row. This will be zero for an open SUT, reflecting

that the sink node y does not have an edge into any S or P node and the source node v does not receive

and edge from any S or P node. To close the SUT we set w = Din(v) = Dout(y).

4One might also construct such systems directly from empirical data, going under the name Social Accounting Matrices

(SAM)
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Wkl =



0 0 · · · 0 0 U11 U12 · · · U1,n−1 y1

0 0 · · · 0 0 U21 U22 · · · U2,n−1 y2
...

...
. . .

...
...

...
...

. . .
...

...

0 0 0 0 0 Um−1,1 Um−1,2 · · · Um−1,n−1 ym−1

0 0 · · · 0 0 v1 v2 · · · vn−1 0

V11 V12 · · · V1,m−1 0 0 0 · · · 0 0

V21 V22 · · · V2,m−1 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

Vn−1,1 Vn−1,2 · · · Vn−1,m−1 0 0 0 · · · 0 0

0 0 · · · 0 w 0 0 · · · 0 0



(14)

2.3 Environmental Impact Extensions

2.3.1 Modeling Environmental Impact

In the previous section we expressed key SUT concepts and tools in the language of graphs. Here we expand

the toolkit to include the concept of Environmental Impact in the spirit that this is usually applied in

Environmentally-Extended Input-Output frameworks. In this approach, in order to trace the impact of

economic activity, input-output frameworks are extended to account for so-called production factors or

environmental stressors (such as resources utilized, pollution generated etc.) that are associated with a

given amount of economic activity. The working assumption in this approach is that environmental impact

can be adequately modeled as a global fungible metric (e.g., the volume of gases that are emitted into

the atmosphere) and that this physical measurement can be linked causally to the economic quantities

captured in the SUT system.

2.3.2 Impact Factors in IO frameworks

In practice, extended Input-Output models consider environmental impacts as additional rows added to

the basic structure of the IO model. This can be done either at Sector or Product level. Widely used

official statistics data and EEIO tables provide region or sector-specific average impact factors expressed

per economic activity (e.g., tCO2eq/e of revenue). A vector of impact coefficients f is defined, where each

element fp represents the impact of production (in its own physical units) associated with one monetary

unit of total Product output xp. Correspondingly, F is the vector of per-sector absolute environmental

impact. The actual impact of a Product with total output xp is Fp = fpxp. The total environmental

impact of the economy is the sum FT =
∑

p Fp.

2.3.3 Impact Factors in a SUT system

While in symmetric IO systems impact factors form a vector associated with the Sector/Product clusters,

in an asymmetric SUT context where m ̸= n the natural container of impact factors is, in principle, a

matrix, namely a Sector-by-Product Impact Matrix Fip indicating the absolute impact associated with

Vip volume of output of Product p by Sector i. Since in a SUT graph a Sector i may produce an arbitrary

number of Products, there is also an arbitrary number of impacts. The general form of the impact weight

function is:
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Fkl =



0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0

F11 · · · F1m 0 0 · · · 0
...

. . .
...

...
...

. . .
...

Fn1 · · · Fnm 0 0 · · · 0


(15)

This matrix can be factored in terms of impact intensities

Fkl =



0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0

f11V11 · · · f1mV1m 0 0 · · · 0
...

. . .
...

...
...

. . .
...

fn1Vn1 · · · fnmVnm 0 0 · · · 0


(16)

The general impact intensity matrix allows more flexibility in modeling varying sectoral impacts.

2.3.4 Single Technology Assumption

Under the assumption that all sectors produce the same product using the same technology, and thus have

the same environmental impact intensity, the matrix can be factored as:

Fkl =



0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0

f1V11 · · · fmV1m 0 0 · · · 0
...

. . .
...

...
...

. . .
...

f1Vn1 · · · fmVnm 0 0 · · · 0


(17)

in other words, fip = fp, the intensity has no dependency on the sector index.

3 Probabilistic Interpretations and Random Walks

Up to this point we did not make any fundamental assumptions that are not already embedded in the

production of the official SUT tables. For the weighted graph G = (V,E,W,F ) to become a tool in

the attribution of environmental impact further assumptions and interpretations are necessary. We start

by expressing the balanced matrix properties inherent in the SUT system. These properties are also

called accounting identities or conservation laws. Subsequently we will introduce normalizations and

interpretations that create a additional structure enabling the attribution task.
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3.1 Economic Conservation Laws and Stochastic Matrices

3.1.1 Balanced Matrices

The matrix of a directed graph is weight-balanced if, at each node, the sum of the weights of the incoming

edges is equal to the sum of the weights of the outgoing edges.

∑
k

Wkl =
∑
k

Wlk (18)

or in terms of the in/out degree matrices:

Dout
ll = Din

ll , ∀l (19)

Introducing the column vector of row sums Zk =
∑

l Wkl, the balance expression can be written also as

ZT = Z

3.1.2 Closed SUT System Balance

We obtain the total Use of a Product p as a column vector xp by summing over all sectoral usage (summing

over all Sectors i in the use table U).

xp =

n∑
i

Upi = Dout(Pp) (20)

The total Supply of a Product p sums over all supplies (by all industries i). These totals are a row

vector of column sums of the Supply matrix V .

xT
p =

n∑
i

Vip = Din(Pp) (21)

The total Input of a Sector i sums over all Product inputs p. These totals form a row vector that

involves the column sums of Use matrix U .

gTi =

m∑
p

Upi = Din(Si) (22)

The total Output of Sector i sums over all Product outputs p. These totals form a column vector of the

row sums of Supply matrix V .

gi =

m∑
p

Vip = Dout(Si) (23)

All the above can be are organized in a table (not a matrix!) as follows:


0 U x

V 0 g

xT gT

 (24)
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In a stylized equilibrium economy and a monetary system with a fixed quantity of money5 monetary

input must match monetary output. In these circumstances monetary flows satisfy the constraint that

the total amount of flow into any node equals the total amount of flow out of it. Thus, expressed in

monetary terms, the total Inputs and Outputs of each Sector node must be equal and, similarly, the total

Use output of a Product node must equal its total Supply inputs. For all Sector nodes i, the total Input

(left side of the equation) is equal with the total Output.

gTi = gi (25)

Similarly for Product nodes p

xT
p = xp (26)

Hence,

xp =

n∑
i

Vip =

n∑
i

Upi (27)

gi =

m∑
p

Vip =

m∑
p

Upi (28)

These equations are similar to Kirchhoff’s Law for electric circuits, where they reflect the conservation

of charge.

3.1.3 Open SUT System Balance

In the case of an open SUT system the accounting equations, at Product and Sector level are respectively:

xp =

n∑
i

Vip = yp +

n∑
i

Upi (29)

gi =

m∑
p

Vip = vi +

m∑
p

Upi (30)

In an arbitrary open graph the total inflow is mathematically independent (need not be equal) from the

total outflow. We focus on closable systems that in addition satisfy the closure constraint:

n∑
i

vi =

m∑
p

yp = w (31)

where w is the total inflow/outflow. Here we assume this to be a scalar, i.e., only one source and sink

node respectively but this can be generalized. This condition can also be written as:

5Thus no private or sovereign money creation
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m∑
p

n∑
i

Vip = w +

m∑
p

n∑
i

Upi (32)

The balance equations can be organized in a table where the last column and row represent row and

column sums respectively.


0 U y x

V 0 0 g

0 v 0 w

xT gT w

 (33)

3.2 From Weights to Probabilities

3.2.1 Stochastic Matrices

A stochastic matrix Q is a square nonnegative matrix whose rows and/or columns satisfy certain conditions.

In a right or row stochastic matrix each row sums to 1,

∑
l

Qkl = 1 (34)

In a left or column stochastic matrix each column sums to 1:

∑
k

Qkl = 1 (35)

A doubly stochastic (also bistochastic) matrix satisfies both conditions simultaneously. Stochastic ma-

trices are also called transition matrices or probability matrices. The raw (empirically derived) weighted

adjacency matrix W will in general not be stochastic. Measurements using arbitrary units do not need to

sum up to unity. Yet given a weight matrix W , one can, in-principle, derive two transition matrices by

dividing with either the row or column sums. Of course, to divide by row sums every node has to have at

least one out-going edge and to divide by column sums every node has to have at least one in-going edge.

Qout
kl =

Wkl

zl
(36)

Qin
kl =

Wkl

zk
(37)

What do these two matrices represent and what are they useful for? Qout has the property that the

outgoing edges from all nodes are assigned probabilities that sum to one. As we will see below this

transition matrix is useful when one wants to start on some node and follow randomly the direction of

the graph (downstream) by picking one of the outgoing edges with the assigned probability. Respectively

Qin has the property that ingoing edges on all nodes are assigned probabilities that sum to one. This

version is useful when one wants to start from a node and follow upstream the reverse direction of the

graph, picking randomly one of the incoming edges. Maybe worth mentioning that the above mappings

are many-to-one, many weighted adjacency matrices map to the same transition matrix Q.
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3.2.2 About Markov Chains

The stochastic matrices Qout|in, when available, are still effectively processed versions of the empirical

economic data. Given their properties though, they can be associated with discrete time Markov Chain

processes. This association takes us into the realm of models. The essential assumption, which is not

unlike similar assumptions in the construction of the Leontief and Ghosh IO models, is that the normalized

quantities Qout|in are somehow intrinsic to the system, for example invariant under the passage of time.

Markov chains are relatively simple and powerful models but are based on strong assumptions. They

posit that the random process being modeled has no memory. In other words, a sequence of random

events (graph traversing steps) happening in discrete steps is such that the probability of each next event

depends only on the state attained in the previous event (but no prior states).

More concretely, a discrete-time Markov chain is a sequence of random variablesX(0), X(1), X(2), X(3), . . .

where the possible values of the random variable X form a finite set called the state space of the chain. In

our case the states of the Markov Chain are in one-to-one correspondence with the nodes V of the SUT

graph. The variable X takes integer values in [1, N ], indicating which node is ”occupied” or ”visited” at

each step of the process.

3.2.3 Closed SUT Stochastic Matrices

For a closed system the normalization is in more detail as follows:

3.2.4 The Row Stochastic Closed SUT Matrix

Dividing by xp and gi respectively we get

1 =

n∑
i

Upi

xp
=

n∑
i

upi (38)

1 =

m∑
p

Vip

gi
=

m∑
p

vip (39)

and the row-stochastic transition matrix Qout:

Qout
kl =



0 0 · · · 0 u11 u12 · · · u1n

0 0 · · · 0 u21 u22 · · · u2n

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 um1 um2 · · · umn

v11 v12 · · · v1m 0 0 · · · 0

v21 v22 · · · v2m 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

vn1 vn2 · · · vnm 0 0 · · · 0


(40)

3.2.5 The Column Stochastic Closed SUT Matrix

Using column sums we would obtain alternatively:
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1 =

m∑
p

Upi

gi
=

m∑
p

ũpi (41)

1 =

n∑
i

Vip

xp
=

n∑
i

ṽip (42)

.

which produces a similar expression as 40 replaced with the tilde variables. For closed SUT graphs both

Q matrices exist and they retain the simple block structure of the weight matrix:

Qin|out =

[
0 uin|out

vin|out 0

]
(43)

3.2.6 Open SUT system and Absorbing Markov Chains

In an open SUT system the creation of a stochastic transition matrix from the weighted adjacency matrix

involves a subtlety: as we saw, the matrix is singular (does not have full rank). The zero rows and

columns encode the fact that sink nodes have zero oud-degree and source nodes have zero in-degree. A

simple modification that addresses this is to turn these nodes into absorbing nodes. Intuitively, once the

state of the system hits a sink node (for a downstream flow) or a source node (for an upstream flow), we

want it to stay there for all future steps. Pictorially this is shown as follows:

S1

S2

P1

P2

P3

V

Y

Absorbing Chain at Final Demand (Sink).

Downstream flow reaching Y will stay there.

S1

S2

P1

P2

P3

V

Y

Absorbing Chain at Value Added (Source).

Upstream flow reach V will stay there.

For an absorbing Markov chain with one absorbing state, the transition matrix Q can be arranged to

have the following block structure, known as the canonical form:

Q =

[
B R

0 1

]
(44)

where B is a (N − 1)× (N − 1) transition matrix between transient states and R is (N − 1)-dim column

vector of probabilities to transition into the sink node. In our case the matrix downstream transitions

would be:
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Qout
kl =



0 0 · · · 0 0 u11 u12 · · · u1n ỹ1

0 0 · · · 0 0 u21 u22 · · · u2n ỹ2
...

...
. . .

...
...

...
...

. . .
...

...

0 0 0 0 0 um1 um2 · · · umn ỹm

0 0 · · · 0 0 ṽ1 ṽ2 · · · ṽn 0

v11 v12 · · · v1m 0 0 0 · · · 0 0

v21 v22 · · · v2m 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

vn1 vn2 · · · vnm 0 0 0 · · · 0 0

0 0 · · · 0 0 0 0 · · · 0 1



(45)

and similarly for upstream transitions.

Qin
kl =



0 0 · · · 0 0 u11 u12 · · · u1n ỹ1

0 0 · · · 0 0 u21 u22 · · · u2n ỹ2
...

...
. . .

...
...

...
...

. . .
...

...

0 0 0 0 0 um1 um2 · · · umn ỹm

0 0 · · · 0 1 ṽ1 ṽ2 · · · ṽn 0

v11 v12 · · · v1m 0 0 0 · · · 0 0

v21 v22 · · · v2m 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

vn1 vn2 · · · vnm 0 0 0 · · · 0 0

0 0 · · · 0 0 0 0 · · · 0 0



(46)

A peculiarity of the above construction is that the graph is no longer bipartite (and it involves a self-

loop). If we want to preserve the bipartite property while still preventing the chain to wander back into

transient nodes we can introduce a dummy Sector (resp. Product) that acts as a sort of reflection chamber.

S1

S2

dm

P1

P2

P3

V

Y

Dummy Node that traps upstream flows. Once the

flow reaches V it keeps iterating between the

dummy node and V .

S1

S2

P1

P2

P3

dm

V

Y

Dummy Node that traps downstram flows. Once it

reaches Y it keeps iterating betweeen the dummy

node and Y .
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For example, for downstream transitions upon introducing an extra production node, we have an (N +

1)× (N + 1) matrix:

Qout
kl =



0 · · · 0 0 0 u11 · · · u1n ỹ1
...

. . .
...

...
...

...
. . .

...
...

0 0 0 0 0 um1 · · · umn ỹm

0 · · · 0 0 0 ṽ1 · · · ṽn 0

0 · · · 0 0 0 0 · · · 0 1

v11 · · · v1m 0 0 0 · · · 0 0
...

. . .
...

... 0
...

. . .
...

...

vn1 · · · vnm 0 0 0 · · · 0 0

0 · · · 0 0 1 0 · · · 0 0



(47)

Thus in the open case too, if desired the transition matrices can be expressed in bipartite form:

Qout|in =

[
0 ûout|in

v̂out|in 0

]
(48)

3.2.7 About Random Walks

A random walk over a graph can be modeled by a Markov chain with probability transition matrix Q.

The downstream transitions matrix Qout captures the probability of a transition from node k to node l

following the direction of the graph. Thus, conditional on X(t) = k the probability of X(t+ 1) = l is

Qout
kl = Pr(X(t+ 1) = l | X(t) = k) (49)

This is the probability of moving forward from node k to node l if there is an edge (k, l), following

the direction of the graph (downstream). The upstream transition matrix Qin assigns the probability of

having moved from node l to node k if there is an edge (l, k). It is thus moving at random against the

direction of the graph (upstream).

Qin
lk = Pr(X(t) = k | X(t− 1) = l) (50)

Which version is suitable to use depends on the desired analysis. In either case, for the bipartite SUT

graph the random walk will be a sequence of alternating sector and product nodes, e.g., P0, S1, P2, S3, P4, S5 . . ..

The walk terminates on a sink or source node if we work with an open SUT system or iterates for ever

in a closed SUT system. The starting point of the random walk may equally well be a product or sector

node, again depending on the question we ask. Formally a random walk on a bipartite graph represents

a Markov Chain with all states having periodicity 2.

3.2.8 The State Probability Vector P

Denote Pk(t) a vector of probabilities (
∑

k Pk = 1) that express the likelihood that the system is at a

given node k at any step t. One such vector Pk(0) can be taken as the starting state (initial condition) of



24
Open Risk

Follow the Money: Random Walks on Supply and Use Graphs

the chain at time 0. The initial condition can also be taken to be deterministic (fully known) by using a

probability vector Pk(0) that has a single non-zero value equal to unity for some k. In a bipartite graph

it is natural to consider probability vectors with block structure: PT = [p1, . . . , pm, s1, . . . , sn].

3.2.9 Kolmogorov Equation

Given Pk(t), the probability of being in node l one step later, is given by:

Pl(t+ 1) =
∑
k

Pk(t)Q
out
kl (51)

or in matrix notation

PT (t+ 1) = PT (t)Qout (52)

Multiplying the probability vector with Q from the right represents one step forward. This is the discrete

form of the forward Kolmogorov equation.

A similar equation applies for upstream transitions.

Pk(t) =
∑
l

Qin
klPl(t− 1) (53)

which in matrix form shows the multiplication from the left:

P (t) = QinP (t− 1) (54)

Apply iteratively Equation 51 to link an initial state with a final state after a number of forward

transitions we get (dropping the out indicator):

PT (t) = PT (0)Qt (55)

3.2.10 Stationary Probabilities

For a closed SUT system, the vector of stationary probabilities is denoted by π and satisfies πTQ = πT

and πT 1 = 1.

πl =
∑
k

πkQ
out
kl (56)

π gives the fraction of the total of visits a random walk has visited every states. In this sense it reflects

the importance of a node.
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3.3 Follow the Money to trace Impact

3.3.1 Monetary Interpretation

The idea of following the money on a graph is a mathematical representation of the fact that funds

from purchases or sales of diverse economic actors diffuse through the econosphere via the graph edges.

With the implicit assumption that the transition probabilities are time invariant, an initial ebill will

travel along the graph (forward or backward) following the probabilities indicated by the edge weights.

Equation 51 can be interpreted as tracing the origin of funds within an economy, where money is coming

from. Equation 53 can be interpreted as tracing the destination of funds with an economy, where money

is going to. In an open system money comes from final demand nodes and ends up to value added nodes.

In a closed system money keeps going around.

As the initial money amount jumps from node to node, it may be associated with environmental impact.

I

Si

J

Pp

vip

upi

Fip = fpVip

The two types of random walk steps that transition

between S and P nodes. The black edge is a use-type

transition (with probability upi). The red edge is a

supply-type transition with probability vip. In our

formulation this is the transition type responsible for

environmental impact and Fip encodes the magnitude

of that impact.

3.3.2 Calculating Expectations

With the availability of the propagation equations in principle any quantities concerning the multivari-

ate distribution of X(1), . . . X(n) can be computed. The most obvious useful metrics concern marginal

probabilities. For example the expected value of the random walk itself is given by the expression:

E(X(t)) =
∑
k

kPk(t) (57)

Given the arbitrary nature of the index k (the ordering of nodes is entirely by convention), this expec-

tation does not carry any intrinsic economic meaning.

3.3.3 Expectations of Node Functions

A node function is a random variable H(X) whose value is solely depending on which node is indicated

by X(t) at some step t. As an example of a calculation using node functions, assume that the process

X(t) starts in state X(0) = k ∈ V at step 0, and further

H(t) =

Hl, if X(t) = l

0, otherwise
(58)
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in words, it is only non-zero if at step t the walk is on a certain node l. Then the expected value of H(t)

is:

E(H(t)) =
∑
r

E(H(t)|X(t) = r) = HlPl(t) (59)

If the starting probability distribution is Pk(0) = uk and P (t) is the probability distribution over nodes

t steps later then

PT (t) = uTQt (60)

and

E(H(t)) = Hl

∑
r

urQ
t
rl (61)

3.3.4 Expected Environmental Impact

For impact calculations we’ll be interested in functions that depend on the state of chain in two successive

steps. This is because impact is not a static attribute of nodes but is generated while specific edges are

being traversed.

F (t) =

fip, if X(t− 1) ∈ S and X(t) ∈ P

0, otherwise
(62)

In other words F (t) is zero when the random walk is moving product from market to sectors and equal

to the intensity matrix fip when moving product from sector to markets. Since F (t) is a function of two

random variables X(t− 1), X(t) we must condition on all combinations that produce non-zero value.

E(F (t)) =
∑
k

∑
l

E(F (t)|X(t) = k,X(t− 1) = l) (63)

=
∑
i

∑
p

E(F (t)|X(t) = p,X(t− 1) = i) (64)

=
∑
i

∑
p

fip P (X(t) = p,X(t− 1) = i) (65)

=
∑
i

∑
p

fip P (X(t) = p |X(t− 1) = i)P (X(t− 1) = i) (66)

=
∑
i

∑
p

fipQ
in
ipPp(t− 1) (67)

= f ◦Q · P (t− 1) (68)

In terms of the t = 0 distribution this is rewritten as

E(F (t)) =
∑
k

∑
l

fklQ
t
klPl(0) = f ◦Qt · P (0) (69)
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3.3.5 Cumulative Impact over Multiple Steps

It is common in EEIO impact analysis to consider so-called 1-st, 2-nd etc. rounds of impact. In our

context this translates into calculating the expected impact for a sequence of random steps up to the

desired number of rounds (which may also be infinite). Given an initial node X(0), the cumulative

environmental impact along a random path up to step t will be simply the sum:

C(t) =

t∑
s=0

F (t) (70)

While the function C(t) depends on all random variables X(1), . . . , X(t), the Markovian nature of the

random process makes the calculation possible. We can calculate the expectation of the sum up to t to

get:

E(C(t)) =
∑
t

E(F (t)) =
∑
t

f ◦Qt · P (0) (71)

3.3.6 Variance of Environmental Impact

This calculation is a further example of metrics that can be easily built on top of the probabilistic

interpretation of the SUT graph as a random walk. Starting with the definition of variance:

V(F (t)) = E(F (t)2)− E(F (t))2 (72)

The new part is the expectation of the square of the impact function. This proceeds entirely analogously:

E(F (t)2) =
∑
k

∑
l

E(F (t)2|X(t) = k,X(t− 1) = l) (73)

=
∑
i

∑
p

f2
ip P (X(t) = p,X(t− 1) = i) (74)

=
∑
i

∑
p

f2
ipQipPp(t− 1) (75)

= f2 ◦Q · P (t− 1) (76)

Putting things together:

V(F (t)) = f2 ◦Q · P (t− 1)− (f ◦Q · P (t− 1))2 (77)

= f2 ◦Qt · P (0)− (f ◦Qt · P (0))2 (78)

Computing the variance metric is the standard way to obtain a sense of uncertainty around a result, in

this case the intrinsic variance of the calculated environmental impact.

F (t) ≈ E(F (t))±
√
V(F (t)) (79)
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Note that the uncertainty involved here is not due to data quality uncertainties in the underlying data

collection and processing but is rather to be understood as the result of the potential intrinsic fluctuations

in the economic circulation network. In this sense it is a model dependent result that further leverages

the fundamental transition probability calculations.

A Worked out Example

As a simple numerical example we will reuse an IO system that has been discussed before [19, 30]. We

consider a world with just two production sectors: Agriculture (Ag) and Manufacturing (Ma). These

two sectors sell goods and services to each other and also to households who purchase the final, finished

products sold by each of the sectors. In classic IO analysis we would introduce here a 2× 2 inter-industry

sales or transactions Z table (alongside a Final Demand column and a Value Added row).
Ag Ma FD

Ag 8 5 3

Ma 4 2 6

V A 4 5 0


Classic (Symmetric) IO System

This table shows annual transactions between actors in the economy. For example Ag sector purchases

4e worth of goods and services from the Ma sector and 8e worth of goods and services from the Ag sector.

To place ourselves in a SUT context we will instead imagine three Sectors: The Agriculture Sector (Ag-s),

Manufacturing Sector (Ma-s) and Final Demand Sector (FD) but also three corresponding Products: The

Agriculture Product (Ag-p), Manufacturing Product (Ma-p) and Value Added (VA). This process might

be called a minimal assumptions extension from a symmetric IO system to a compatible SUT (there are

obviously infinitely more possibilities).

For concreteness we can imagine Final Demand is exclusively from Households (Sector) and the Value

Added is their Labor (Product) input into the economy but we keep the notation as-is for comparability

purposes. For the Supply matrix S we assume a diagonal structure, namely each Sector produces its own

Product. The Use matrix U is verbatim the Z matrix. With these simplest assumptions we can compose

the Weights matrix W that characterizes the SUT.
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A.1 Preliminaries

16

12
4

5

4

2

6

3

5

8

Ags

Mas

FD

Agp

Map

VA

An open 3× 3 SUT system

Wkl =



Agp Map V A Ags Mas FD

Agp 0 0 0 8 5 3

Map 0 0 0 4 2 6

V A 0 0 0 4 5 0

Ags 16 0 0 0 0 0

Mas 0 12 0 0 0 0

FD 0 0 0 0 0 0


Weight Matrix of open SUT system. Notice the zero

column and zero rows corresponding to the value

added product and final demand sector respectively.

The corresponding bipartite graph translates the weight matrix into a visible structure. The supply-side

transactions that create environmental impact are indicated with red arrows (the amount of impact is not

shown). The Value-Added node at the upper right corner is endowed with a self-loop. In the example

we will traverse the graph upstream hence need to create such an absorbing node. The next step is to

produce a column stochastic transition matrix Q by dividing all columns (except the one with exclusive

zeros) by the column sums:

Qkl =



Agp Map V A Ags Mas FD

Agp 0 0 0 0.50 0.42 0.33

Map 0 0 0 0.25 0.17 0.67

V A 0 0 1 0.25 0.42 0

Ags 1 0 0 0 0 0

Mas 0 1 0 0 0 0

FD 0 0 0 0 0 0


Transition Matrix of an Open SUT system (Column Stochastic Version). We insert unity at the diagonal

element of Value Added to convert it into an absorbing state.

As discussed in the main document, there are various ways of addressing the singular nature of an open

system’s weight matrix. Here we illustrate the simplest way. As final step before calculating something

we need to construct the environmental impact intensity matrix. We start with the absolute impacts

associated with the supply matrix:
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Fkl =



Agp Map V A Ags Mas FD

Agp 0 0 0 0 0 0

Map 0 0 0 0 0 0

V A 0 0 0 0 0 0

Ags 8 0 0 0 0 0

Mas 0 4 0 0 0 0

FD 0 0 0 0 0 0


The absolute Impact Matrix of the SUT system (this is input data).

We normalize the above matrix by dividing with the transaction values of the supply matrix to obtain:

fkl =



Agp Map V A Ags Mas FD

Agp 0 0 0 0 0 0

Map 0 0 0 0 0 0

V A 0 0 0 0 0 0

Ags 0.5 0 0 0 0 0

Mas 0 0.33 0 0 0 0

FD 0 0 0 0 0 0


Impact Intensity Matrix of the SUT system (derived from W and F ).

Now we are ready to compute! We imagine that we (a generic consumer in the final demand sector)

purchase a 1e shirt from a clothing business (part of the Ma sector). A classic EEIO calculation is to

find the total upstream emissions associated with this shirt.6

A.2 Step 1

In the first step we start at the FD node (consumers of shirts). Mathematically this is described by the

the probability mass being one at k = 6.

PT (0) = [0, 0, 0, 0, 0, 1] (80)

Purchasing the shirt means we move upstream to node Map, the product market where the manufac-

turing sector has deposited the shirt. Here we are conditioning on the 1e being spent on the shirt, so the

broader menu of options (purchasing something from the Agriculture sector) does not apply.

The chain now occupies the state k = 2 with certainty:

PT (1) = [0, 1, 0, 0, 0, 0] (81)

The shirt purchased has already been produced, so the first transition (buying it) does not entail any

material impact in itself, hence:

6If the actual shirt is above (or below!) that value we will simply scale the result! This linearity is a fundamental feature

of IO models.
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E(F (1)) = 0 (82)

A.3 Step 2

We must continuing upstream to trace the source of emissions. In this simple case there is only one sector

producing shirts so the only direction upstream is to the node Mas. That transition is modeled as the

matrix-vector product QPk(1). The result is (with certainty) moving from product sector k=2 to the

manufacturing sector k=5:

PT (2) = [0, 0, 0, 0, 1, 0] (83)

The associated second step impact is derived by applying equation 63:

E(F (2)) =
∑
k

∑
l

E(F (t)|X(2) = k,X(1) = l) (84)

=
∑
i

∑
p

E(F (t)|X(2) = i,X(1) = p) (85)

=
∑
i

E(F (t)|X(2) = i,X(1) = 2) (86)

=
∑
i

fi2P (X(2) = i,X(1) = 2) (87)

=
∑
i

f2P (X(2) = i |X(1) = 2)P (X(1) = 2) (88)

=
∑
i

f2P (X(2) = i |X(1) = 2) (89)

=
∑
i

f2Qi2 (90)

= f2Q42 + f2Q52 + f2Q62 (91)

= f2Q52 = 0.33× 1 = 0.33 (92)

The first line of the calculation is conditioning on all relevant states of X at steps 1 and 2. The second

line focuses on the only non-zero elements (from sector to product). The third line conditions on us being

on node=2 with certainty. The fourth line inserts the impact intensity for this path. The fifth line uses

again conditioning to bring out the Markov Chain transition matrix and we finally have a sum-product

which in this case has only one non-zero value. The impact attributed to u = 1e is thus

E(F (2)) = 0.33 (93)

Let us also compute the variance of this result. Starting with the variance formula 77 and going through

the same steps we get:

V(F (2)) = (0.33)2 − (0.33)2 = 0 (94)

This is not terribly surprising as there was no uncertainty as to which path we had to traverse so far.

This will not the case in the further steps.
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A.4 Step 3

Continuing upstream we now have to trace the ingredients that went into the making of the shirt. There

are three inputs, labor from the VA node, and both manufactured products and agricultural products

from the respective markets. Since there are thee possible paths the 1e must follow each one with its

own probability:

PT (3) = [0.42, 0.17, 0.42, 0, 1, 0] (95)

As for the expected impact in this step going through the same motions we find:

E(F (3)) =
∑
k

∑
l

E(F (3)|X(3) = k,X(2) = l) (96)

=
∑
i

∑
p

E(F (3)|X(3) = i,X(2) = p) (97)

=
∑
i

∑
p

fpP (X(3) = i,X(2) = p) (98)

=
∑
i

∑
p

fpP (X(3) = i |X(2) = p)P (X(2) = p) (99)

=
∑
i

∑
p

fpQPp(2) = 0 (100)

or

E(F (3)) = 0 (101)

The pattern is that the odd steps of the upstream random walk, moving from sectors to their input

product markets does not create impact.

A.5 Step 4

In the fourth step, the transition matrix applied to the step 3 probability vector produces

PT (4) = [0, 0, 0, 0.42, 0.42, 0.17] (102)

Going again through the calculation in detail:
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E(F (4)) =
∑
k

∑
l

E(F (4)|X(4) = k,X(3) = l) (103)

=
∑
i

∑
p

E(F (4)|X(4) = i,X(3) = p) (104)

=
∑
i

∑
p

E(F (4)|X(4) = i|X(3) = p)P (X(3 = p)) (105)

=
∑
i

∑
p

fipP (X(4) = i,X(3) = p)P (X(3) = p) (106)

=
∑
i

∑
p

fpQipP (X(3) = p) (107)

=
∑
i

f1Qi1P (X(3) = 1) +
∑
i

f2Qi2P (X(3) = 2) (108)

=
∑
i

0.5Qi10.42 +
∑
i

0.33Qi20.17 (109)

= 0.5Q310.42 + 0.33Q420.17 (110)

= 0.26 (111)

With a similar calculation for the variance.

V(F (4)) = (0.123)− (0.26)2 = 0.05 (112)

This means that the volatility intrinsic to the expected impact is substantial. This is due to the fact we

have only two sectors.

A.6 Step 5

Step 5 is again an emissionless step and the landing probabilities of the upstream journey are:

PT (5) = [0.28, 0.13, 0.59, 0, 0, 0] (113)

Notice that the probability weight of the VA node keeps increasing. This is the action of an absorbing

state. Eventually all the probability mass of the chain will be cumulated here.

E(F (3)) =
∑
k

∑
l

E(F (3)|X(3) = k,X(2) = l) (114)

=
∑
i

∑
p

E(F (3)|X(3) = i,X(2) = p) (115)

=
∑
i

∑
p

fpP (X(3) = i,X(2) = p) (116)

=
∑
i

∑
p

fpP (X(3) = i |X(2) = p)P (X(2) = p) (117)

=
∑
i

∑
p

fpQ
in
ipPp(2) = 0 (118)
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Again:

E(F (5)) = V(F (5)) = 0 (119)

A.7 Step 6

In the final step (of our journey, in principle we can go on) we get a probability vector

PT (3) = [0, 0, 0.59, 0.28, 0.13, 0] (120)

Repeating the same calculation procedure:

E(F (6)) = 0.18 (121)

V(F (6)) = 0.05 (122)

and so on and so forth!
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